<address id="hbdtj"><listing id="hbdtj"></listing></address>
<address id="hbdtj"><listing id="hbdtj"><nobr id="hbdtj"></nobr></listing></address>
<noframes id="hbdtj">
<address id="hbdtj"><address id="hbdtj"><listing id="hbdtj"></listing></address></address>

<address id="hbdtj"><nobr id="hbdtj"><meter id="hbdtj"></meter></nobr></address>

<address id="hbdtj"></address>
    <address id="hbdtj"></address>

    徐剛教授學術報告會

    發布時間:2019-01-14作者:訪問量:209

    報告題目Magnetic topological semimetals

    報 告 人:徐剛 教授(華中科技大學)

    報告時間:2019115日 上午900

    報告地點:磬苑校區 現代實驗技術中心A507

    主辦單位:物質科學與信息技術研究院

    歡迎各位老師、同學屆時參加!

                                                    科學技術處

                                                  2019114

    報告摘要:

    In a 3D solid, the low energy excitation of the linearly dispersive crossing bands satisfies the Dirac (Weyl) equation. Such band crossing is named as Dirac (Weyl) node (DN or WN), and such solid is known as the topological (Dirac or Weyl) semimetal (DSM or WSM), which exhibit remarkable features, such as Fermi arcs, magnetic monopoles and Weyl anomaly. In this talk, I will introduce three works on magnetic topological semimetals. 1. Ferromagnetic HgCr2Se4, the only known of double-Weyl semimetal, where the quantum anomalous Hall effect can be achieved in its quantum-well structure. 2. The long-pursuing ideal WSM realized in the non-collinear magnetic GdSI. We demonstrate that fruitful topological phases can be realized in a specific honeycomb lattice, including the ideal Weyl semimetal, double-Weyl semimetal, 3D strong topological insulator, nodal-line semimetal, and a novel semimetal consisting of both Weyl nodes and nodal-lines. 3. Anti-ferromagnetic (AFM) DSM realized in the interlayer AFM EuCd2As2. In this work, we generalize the concept of DSM to the magnetic space groups (MSGs), and define a new category of DSM in type IV MSGs. Many exotic topological states, such as the triple point semimetal and the AFM topological insulator holding of the half-quantum Hall effect can be derived from such AFM DSMs by breaking certain symmetry, providing an ideal platform to study topological phase transitions.

    返回原圖
    /

    9188彩票 亿发彩票 | 快乐投彩票 | 新京报彩票 | 印象彩票 | 新贝彩票 | 公益彩票 | 金巴黎彩票 | 8828彩票娱乐 | 聚财彩票 | 壹号彩票 | 平安彩票 | 600W彩票 | 问鼎彩票 | 71彩票 | 王者对决彩票 | 滴滴彩票 | 名人彩票 | 黄金彩 | 750彩票 | 时时彩平台 | 268彩票 | 好彩票 | 久久彩票 | 博创彩票 | 博乐彩票 | 易发彩票 | 天利彩票 | 众益彩票 | 滴滴彩票 | 大世界彩票 | 华彩彩票 | 新盈彩彩票 | 久彩彩票 | 彩店宝彩票 | 问鼎彩票 | 名游彩票 | 雅彩彩票 | 福盈彩票 | 众富彩票 | 666彩票 | 宝马彩票 | 198彩票 | 约彩365 | 金利彩票 | 118彩票 | 福盈彩票 | 时时彩彩票 | 双赢彩票 | cpcp彩票 | 奔驰彩票 | 爱投彩票 | 奥运彩票 | 万森彩票 | 彩39彩票 | 鸿彩彩票 | 198彩票 | 彩票乐园 | 福利宝彩票 | 旺彩彩票 | 600万彩票 | 云购彩票 | 幸运彩票 | 赢发彩票 | 彩宝宝彩票 | 易发彩票 | 好运彩彩票 | 魔方彩票 | 王牌彩票 | 泰彩彩票 | 葡京彩票 | 8888彩票 | 财界彩票 | 利盈彩票 | 万国彩票 | 赢家彩票 | 聚财彩票 | 永利彩票 | 东升彩票 | 凯撒彩票 | 东方彩票 | 章鱼彩票 | 九州彩票 | 凤凰888彩票 | 利盈彩票 | 盛宏彩票 | 利盈彩票 | 红旗彩票 | cpcp彩票 | 彩28彩票 | 福地彩票 | 黄金彩票 | 106彩票 | 南国彩票 | 幸运彩票 | 拉菲2彩票 | 乐彩彩票 | 808彩票 | 啦啦彩 | 好彩头彩票 |